Weakening WebAssembly (Extended Draft)

CONRAD WATT, University of Cambridge, UK
ANDREAS ROSSBERG, Dfinity Stiftung, Germany
JEAN PICHON-PHARABOD, University of Cambridge, UK

WebAssembly (Wasm) is a safe, portable virtual instruction set that can be hosted in a wide range of environments, such as a Web browser. It is a low-level language whose instructions are intended to compile directly to bare hardware. While the initial version of Wasm focussed on single-threaded computation, a recent proposal extends it with low-level support for multiple threads and atomic instructions for synchronised access to shared memory. To support the correct compilation of concurrent programs, it is necessary to give a suitable specification of its memory model.

Wasm’s language definition is based on a fully formalised specification that carefully avoids undefined behaviour. We present a substantial extension to this semantics, incorporating a relaxed memory model, along with a few proposed operational extensions. Wasm’s memory model is unique in that its linear address space can be dynamically grown during execution, while all accesses are bounds-checked. This leads to the novel problem of specifying how observations about the size of the memory can propagate between threads. We argue that, considering desirable compilation schemes, we cannot give a sequentially consistent semantics to memory growth.

We show that our model guarantees Sequential Consistency of Data-Race-Free programs (SC-DRF). However, because Wasm is to run on the Web, we must also consider interoperability of its model with that of JavaScript. We show, by counter-example, that JavaScript’s memory model is not SC-DRF, in contrast to what is claimed in its specification. We propose two axiomatic conditions that should be added to the JavaScript model to correct this difference.

We have also developed an SMT-based litmus tool for our model, which can visualise its axiomatic semantics, including memory resizing.

1 INTRODUCTION

WebAssembly [Haas et al. 2017] (abbreviated Wasm) is a safe virtual instruction set architecture that can be embedded into a range of host environments, such as Web browsers, content delivery networks, or cloud computing platforms. It is represented as a byte code designed to be just-in-time-compiled to native code on the target platform. Wasm is positioned to be an efficient compilation target for low-level languages like C++. Wasm is unusual, especially for a technology in the context of the Web, in that its normative specification is given as a fully formal semantics, informed by the state of the art in programming language semantics, and any new feature must be given a full formal specification before final adoption.

In order to fully support compilation of multi-threaded code to Wasm, it is necessary to extend it with threads as well as a memory consistency model [Boehm 2005]. A memory model describes the way in which architectural behaviour and compiler optimisations may combine to produce a relaxed, or weak, observed semantics of concurrent memory operations, which is not consistent...
with a naive sequential execution of the individual operations. Such relaxed memory models have become the subject of intense study in recent years, at the level of both architectural [Alglave et al. 2009; Flur et al. 2016; Higham et al. 2006; Mador-Haim et al. 2012; Owens et al. 2009] and source-level language [Batty et al. 2015; Dolan et al. 2018; Kang et al. 2017; Lochbihler 2018; Manson et al. 2005; Nienhuis et al. 2016] semantics.

It often proves difficult to balance the various concerns of developers and implementers. An intuitive, predictable source-level semantics often translates to an inefficient and error-prone implementation. The underlying hardware may exhibit weak behaviours which must be carefully mitigated by inserting memory barriers or other synchronisation primitives at compile time, and the compiler must be careful not to perform an optimisation which is valid in single-threaded code, but not when the effects of the code on memory may be observed by other threads [Boehm 2011; Ševčík and Aspinall 2008]. Conversely, a high-level language may, in order to achieve maximum performance, attempt to support all compiler optimisations and expose the union of all possible weak behaviours in the underlying hardware. As can be seen with C++11 relaxed atomics, this leads to a semantics which is almost impossible to reason about, or even circularly justified [Batty et al. 2013; Boehm and Demsky 2014; McKenney et al. 2005].

The memory model for Wasm faces a unique design pressure compared to existing work: all accesses are bounds-checked, and the bounds of Wasm’s memory address space may be resized at runtime. The memory model must not only specify the values observed by concurrent accesses, but also the out-of-bounds behaviour of accesses in the presence of concurrent memory size alterations. Moreover, the need for a safe and portable semantics forbids any notion of undefined behaviour sneaking in.

Our contributions are as follows:

• We give the formal semantics of a concurrent extension of Wasm with threads, atomics, first-class references, and mutable tables.
• We present an axiomatic memory model for this extension which addresses the above challenges.
• We prove that our memory model is sequentially consistent for data-race-free programs (SC-DRF, see Section 6).
• We show by counter-example, verified by tool support, that JavaScript’s memory model is not SC-DRF.
• We present an SMT-based litmus tool which visualises our semantics, including growth, and use it to experimentally validate a correspondence between our model and JavaScript’s.
• We discuss compilation to and from Wasm, and the extent to which we can formally motivate correctness of compilation, given the current state of the art in relaxed memory research.

In developing the memory model, we extensively consulted with Wasm implementers and the Wasm Working Group. The wider Wasm threading specification [Smith 2018] is still under active development and limits concurrent access to linear memory. In this paper, we present a generalised design that already anticipates concurrent use of functions, global variables, and tables, allowing both atomic and non-atomic access to each, to illuminate the full extent of the design space.

2 BACKGROUND

Wasm is closely based on the instruction sets of real CPUs, but at the same time must be portable across hardware. Hence its memory model follows the lineage of models for low-level programming languages, rather than hardware models. To provide some necessary background, we survey the most directly relevant ancestors, the C++ and the JavaScript memory models, in the following.
2.1 The C++ Memory Model

The C++ axiomatic memory model [Batty et al. 2011; Boehm and Adve 2008] is in many ways a seminal work in the area of weak memory semantics. Objects in C++ may be declared as atomic, and atomic operations on these objects may be parameterised with one of several consistency modes, which form a hierarchy from relaxed to seqcst (sequentially consistent). Stronger consistency modes provide more semantic guarantees, but require additional synchronisation in the compilation scheme [Sewell and Sevcik 2016], allowing expert programmers to unlock the full performance of the underlying hardware by carefully designing their program to use weaker consistency modes, with relaxed atomics being designed to compile to bare loads and stores [Sewell and Sevcik 2016].

However, relaxed atomics are so weak that various deficiencies have been found in their semantics [Batty et al. 2013; Boehm and Demsky 2014; McKenney et al. 2005]. In particular, we have the issue of out-of-thin-air reads, whose value may be circularly justified, as in the notorious example where the value 42 may appear in a program that contains no constant numbers or arithmetic [Batty and Sewell 2014]. It is not expected that real hardware or compiler optimisations could ever give rise to such an astonishing execution, so clearly there is space for relaxed atomics to be given a stronger semantics while still compiling to bare loads and stores. However, properly specifying such a strengthening while still admitting all current compiler optimisations is an open problem [Batty et al. 2015].

A location which is not declared as atomic may still be accessed concurrently by multiple threads. However any data race involving a non-atomic operation triggers C++ undefined behaviour. Undefined behaviour in C++ is specified rather brutally. If it is potentially triggered as part of an execution, every execution of the program is allowed to have arbitrary behaviour, even for operations that took place in the past, before the behaviour is triggered, or in executions where it is not triggered at all. This is an ultimate safety valve in the specification where it would be otherwise impossible to give a sensible semantics. The initializing write to the atomic location is modelled as a non-atomic write. Aside from this, atomic locations cannot experience non-atomic accesses.

Because the C++ model contains many consistency modes and concurrency features, its full model is rather large. In order to explain its relationship with the Wasm model, it suffices for us to consider only the “C++ Model Supporting Low-Level Atomics” fragment initially described in [Boehm and Adve 2008], which supports only seqcst and non-atomic consistency modes.

To summarise the core of the model briefly, memory accesses over the course of program execution are collected as a set of abstract records, recording which location was accessed, which value was read/written, and the consistency mode. Accesses that execute sequentially in the same thread are related by sequenced-before. The specification guarantees that all observable executions are valid; that is, it must be possible to give definitions for the relations over accesses reads-from, synchronizes-with, happens-before, and sc such that the axiomatic conditions of the model hold. We reproduce these conditions below, grouping some sub-conditions as “value-consistent”, “hb-consistent”, and “sc-last-visible” to facilitate comparisons to other models presented in this paper.

• happens-before is a strict partial order, and sc is a strict total order on sequentially consistent accesses.
• sequenced-before and synchronizes-with are subsets of happens-before, and sc is compatible with happens-before.
• For all read accesses R, there must exist a write access W such that R reads-from W.
• For all accesses R and W, such that R reads-from W, the following must hold:
 * value-consistent:
 (1) W must access the same location as R, and the observed values are consistent.
hb-consistent:
(1) It is not the case that \(R \) happens-before \(W \).
(2) \(W \) synchronizes-with \(R \) iff both \(R \) and \(W \) are seqcst.
(3) There exists no \(W' \) such that \(W \) happens-before \(W' \), \(W' \) happens-before \(R \), and \(W' \) writes to the same location that \(R \) and \(W \) access.

sc-last-visible:
(1) If both \(R \) and \(W \) are seqcst, then \(W \) must be the last write to the location of \(R \) that is sc before \(R \).
(2) If \(R \) is seqcst and \(W \) is non-atomic, then there exists no \(W' \) such that \(W \) happens-before \(W' \), \(W' \) is sc before \(R \), and \(W' \) writes to the same location that \(R \) and \(W \) access. (†)

The condition highlighted and marked (†) was added to the model [Batty 2014; Batty et al. 2011] after the original draft was found not to guarantee Sequential Consistency of Data-Race-Free programs (SC-DRF), a crucial correctness condition (see Section 6).

The memory model of C++ is specified in a mostly formal manner. However, the wider specification is not a formal semantics. This means that there are inevitable imprecisions in how behaviour in other areas of the specification can be related to the sets of accesses manipulated by the memory model, for example in programs exhibiting undefined behaviour or non-terminating executions.

The C++ memory model implicitly relies on several language-level invariants of the C++ semantics.

• As previously mentioned, it can be assumed that there are no racing non-atomics, since otherwise the program has undefined behaviour.
• Accesses are guaranteed to be to discrete locations which never overlap each other, as a consequence of the C++ “effective type” rules.
• By the same rule, no location can experience a mixture of atomic and non-atomic accesses, except for initializing writes to atomic locations. This exception was the cause of the deficiency corrected by (†).

None of these assumptions hold for Wasm’s more low-level instruction set.

2.2 The JavaScript Memory Model

JavaScript’s shared memory operations are defined over shared array buffers, linear buffers of raw bytes that can be accessed by multiple threads in an array-like fashion through (potentially different) data views. Unlike C++, a single access is therefore defined as affecting the values of a range of bytes, rather than the value of a single abstract location. Moreover, since a JavaScript program may have multiple shared array buffers, events must also track which buffer they are accessing.

The JavaScript memory model defines two consistency modes that can be used programmatically: unordered, and seqcst. While C++ models initial values as non-atomic writes, JavaScript models them using a third consistency mode, init. The init mode functions mostly as unordered, except that it is guaranteed to occur before other events. This is strictly stronger than the C/C++ notion of initialisation, which can be delayed, while JavaScript buffers are guaranteed to be zero-initialised at the moment of their creation.

The model’s core can be briefly summarised in a similar manner to that of the C++ model. Again, sequenced-before has the same meaning, and every execution must respect the following constraints on reads-from, synchronizes-with, and happens-before. However the JavaScript model uses a slightly different formulation of sc. Instead of a total order over only seqcst events, the model requires the existence of a total order across all events, which we will refer to as tot throughout the paper. This distinction is trivial, as the JavaScript model never uses tot to restrict the behaviour of non-atomic
events, meaning that the model could equally well be formulated using \(sc \) (which would be \(tot \) restricted to \(seqcst \) events). Moreover, read and write events are now characterised by a list of byte values rather than a single value as in C++, and \(reads-from \) now relates a read event \(R \) to a list of write events, with each list element describing the source of one byte in \(R \)'s range\(^1\). We adopt the convention that \(R \ reads-from(i) W \) describes \(W \) as the \(i \)-th event in the list.

- \(happens-before \) is a strict partial order, and \(tot \) is a strict total order on accesses.
- \(seced-before \) and \(synchronizes-with \) are subsets of \(happens-before \), and \(happens-before \) is a subset of \(tot \).
- For all read accesses \(R \), for all \(i < \text{size } R \), there must exist a write access \(W \) such that \(R \ reads-from(i) W \), and \(R \) and \(W \) access the same shared array buffer.
- \(init \) events happen before all other accesses with overlapping ranges to the same buffer.
- For all accesses \(R \) and \(W \), for all \(i < \text{size } R \) such that \(R \ reads-from(i) W \), the following must hold:
 - \(\star \) \(value-consistent: \)
 1. \(W \) must access (among others) the \(i \)-th byte index of \(R \), and the value read by \(R \) must be consistent with the value written by \(W \) at that index.
 - \(\star \) \(hb-consistent: \)
 1. It is not the case that \(R \ happens-before W \).
 2. \(W \ synchronizes-with R \) iff both \(R \) and \(W \) are \(seqcst \), and affect equal byte ranges.
 3. There exists no \(W' \) such that \(W \ happens-before W' ', W' \ happens-before R \), \(W' \) writes to the \(i \)-th byte index of \(R \), and \(W' \) accesses the same buffer as \(R \) and \(W \).
 - \(\star \) \(sc-last-visible: \)
 1. If both \(R \) and \(W \) are \(seqcst \) and have equal byte ranges, then \(W \) is the last \(seqcst \) write with equal byte range to \(R \) that is \(tot \) before \(R \).
 2. If \(R \) is \(seqcst \), \(W \) is unordered, then there exists no \(seqcst \) write \(W' \) such that \(W \ happens-before W' ', W \ happens-before R \), \(W' \) is \(tot \) before \(R \), \(W' \) has equal byte range to \(R \), and \(W' \) accesses the same buffer as \(R \) and \(W \). (†)
 3. If \(R \) is unordered and \(W \) is \(seqcst \), then there exists no \(seqcst \) write \(W' \) such that \(W \ happens-before R \), \(W \ happens-before R \), \(W \) is \(tot \) before \(W' \), \(W' \) has equal byte range to \(W \), and \(W' \) accesses the same buffer as \(R \) and \(W \). (‡)
 - \(\star \) \(no-tear: \)
 1. If both \(R \) and \(W \) have equal ranges, and \(R \) and \(W \) are \(tear-free \), then no other access \(W' \) and index \(i' \) can exist such that \(R \ reads-from(i') W' \), \(R \) and \(W \) and \(W' \) have equal ranges, and \(W' \) is \(tear-free \).

As part of this work, we identified that the JavaScript model replicated the SC-DRF violation of the uncorrected C++ model. As in C++, this violation is corrected by extending sc-last-visible with the (†) rule, slightly modified to explicitly not apply in the case of a data race between \(W \) and \(R \), which is implicit in the C++ model. In addition, we discovered a dual violation caused by an unordered read of a \(seqcst \) write. This has no direct analogy in C++, as such accesses are not permitted by the language. This violation is corrected by the (‡) rule. We have proposed the addition of both these rules to the JavaScript model. We discuss this in more detail in Section 6.

The final condition, "no-tear", describes the circumstances in which a write to multiple bytes may be decomposed into independently observable writes to individual bytes. This is possible when dealing with non-aligned, racing writes, or writes larger than the word size of the architecture. The

\(^1\) This sketch glosses over the exact formal details of how indices and ranges are compared and related. The JavaScript language specification gives this aspect of the model an exceptionally complicated and prosaic definition, which is not necessary to discuss the model intuitively.
tear-free predicate describes when a write is guaranteed to be visible indivisibly to reads of identical alignment and range, even when racing. All seqcst accesses are guaranteed to be tear-free. Our memory model for Wasm adopts the basic approach of the JavaScript model.

2.3 Contrasting C++ and JavaScript

JavaScript has found itself co-opted as an ad-hoc compilation target for C++ [Herman et al. 2014]. It is therefore not surprising that their memory models have many similarities. In a JavaScript program which respects the following conditions, it can be seen that unordered JavaScript accesses are equivalent to non-atomic C++ accesses, and JavaScript and C++ seqcst accesses are equivalent to each other, in the sense of the memory consistency behaviours that are allowed:

- There are no data races involving unordered access.
- All accesses are naturally aligned.
- No two accesses have overlapping but non-equal ranges.
- No access ranges beyond the bounds of the buffer.

We can observe that these restrictions effectively re-establish the language-level invariants of C++, and ensure that the byte ranges of JavaScript accesses can each be treated as a discrete location. Compilation from C++ to JavaScript can then be accomplished by allocating each shared object on a disjoint, aligned area of a shared array buffer, and promoting all C++ atomic accesses (of any consistency) to seqcst. C++ pointers to memory then become indices into a data view over the shared array buffer in the translated code.

The JavaScript and C++ models differ in the consistency behaviour that is allowed when the aforementioned conditions are not met. In C++, dereferencing a null pointer or a pointer to unallocated memory results in undefined behaviour. In JavaScript, accessing a shared array buffer at an out-of-bounds or “nonsense” index results in a regular JavaScript value that is, confusingly enough, named undefined. Consequently, executions with out-of-bounds accesses have defined behaviour. Moreover, in C++, data races and overlapping mixed-size accesses all instantly trigger undefined behaviour. The JavaScript specification instead chooses to maintain a defined behaviour, but one that is far weaker than the behaviour of real hardware. In particular, unordered accesses which race with other accesses may be freely read from, without creating any coherence guarantees. This means that executions such as the one shown in Fig. 1 are possible, and well-defined behaviour according to the JavaScript specification.

We have presented the core of both the C++ and JavaScript models, focussing on the semantics of data accesses. Beyond these, the full languages contain additional features which interact with the memory model such as locks, thread creation and suspension, and so on. They are not included here because there are few similarities between the feature sets of the two languages. Generally these features imply additional happens-before edges, for example, if one thread spawns another, all previous actions in the spawning thread will be happens-before all actions in the spawned thread.
3 CONCURRENT WASM

The concurrent version of Wasm that we describe in this paper is an extension of the basic language defined in [Haas et al. 2017]. Fig. 2 shows an extract of the abstract syntax of concurrent Wasm. For space reasons, we omit instructions that are not relevant to the memory model and carry over unchanged from basic Wasm.

Wasm code is organised into individual functions that are in turn bundled into a module, forming a Wasm binary. Wasm code is executed in a host environment that it can only interact with through a module’s imports and exports. In particular, the host may invoke exported Wasm functions, and Wasm code may call imported host functions.

A module can also define, import, or export stateful definitions. Three forms of global state exist in Wasm: the linear memory providing a bounds-checked address space of raw bytes, tables storing and indexing opaque references to functions, and plain global variables. Through import and export, access to stateful definitions can be shared with other modules or the host, which can potentially mutate them. Separate modules can define linear memories or tables separately, such that Wasm effectively supports multiple disjoint address spaces as well as the dynamic creation of new ones.

A recent proposal for Wasm [Rossberg 2018], which will soon be adopted by the standard, turns references to functions or stateful objects into first-class values and generalises the notion of table to a general store for opaque reference values. Because this extension is deeply affected by threading as well, we include it here and describe it first; respective constructs are highlighted in blue in Fig. 2.

References. The set of values that a program can store or compute over is codified by Wasm’s notion of value type. As a low-level language, Wasm so far only allowed numeric value types (integers and floats), which also encode pointers into linear memory. A recent extension proposed to complement them with reference types [Rossberg 2018], which abstract physical pointers into

\[
\begin{align*}
\text{(value types)} & \quad t := nt | rt & \quad (sharing) & \quad sh := \text{local} | \text{shared} \\
\text{(numeric types)} & \quad nt := \text{i32} | \text{i64} | \text{f32} | \text{f64} & \quad (reference types) & \quad rt := \text{sh anyref} | \text{sh funcref} \\
\text{(sign extension)} & \quad sx := s | u & \quad (function types) & \quad ft := \text{sh t} | t^* \\
\text{(storage size)} & \quad sz := 8 | 16 | 32 | 64 & \quad (global types) & \quad gt := \text{sh mut t} \\
\text{(packed type)} & \quad pt := sz \cdot sx^2 & \quad (table types) & \quad tt := \text{sh rt}[n] \\
\text{(order)} & \quad ord := \text{unord} | seqctl | init & \quad (memory types) & \quad mt := \text{sh}[n] \\
\text{(instructions)} & \quad e := \ldots | \text{call i} | \text{call indirect ord ft} | \text{global get ord i} | \text{global set ord i} | \text{table get ord} | \text{table set ord} | \text{table size} | \text{table grow} | \text{ref null} | \text{ref func i} | \text{nt load ord pt a o} | \text{nt store ord sz a o} | \text{nt rmw binop pt a o} \\
\text{fork i} | \text{export “name”} \\
\text{(globals)} & \quad \text{glob := ex* global gt im} | \text{ex* global gt e*} \\
\text{(tables)} & \quad \text{tab := ex* table tt im} | \text{ex* table tt (e*)*} \\
\text{(memories)} & \quad \text{mem := ex* memory mt im} | \text{ex* memory mt} \\
\text{(export)} & \quad \text{ex := export “name”} \\
\text{(import)} & \quad \text{im := import “name” “name”} \\
\text{(modules)} & \quad \text{mod := module func* glob* tab* mem*} \\
\end{align*}
\]

Fig. 2. Abstract syntax of concurrent Wasm (excerpt)
the host system’s memory. This extension enables Wasm code to safely round-trip pointers to
host objects (such as DOM objects on the Web), which previously required bijective mappings
to numbers at the language boundary and brittle manual lifetime management. The extension
also enables a first-class representation of function references, and hence (in another extension not
considered here) type-safe indirect calls. We consider only minimal support for references here,
where the only types available are anyref and funcref – the former is the top type of all references,
the latter includes all function references.

Wasm code can either form references from a local function index (ref.func) or as the null
reference (ref.null) – both anyref and funcref are inhabited by null (future refinements to the type
system will exclude it from certain types). In addition, we assume that the host environment can
create unspecified forms of references and pass them to Wasm.

Unlike numeric types, whose representation is transparent and whose values can hence be stored
into memory, reference types must be opaque for safety and security reasons; that is, their bit
pattern must not be observable and they cannot be allowed into raw memory.

Tables. To make up for this, Wasm’s existing notion of table is generalised. Originally, it only
allowed holding function references, which was useful for emulating raw function pointers and
indirect calls, especially when compiling C-like languages [Haas et al. 2017]. The reference proposal
repurposes tables as a general storage for references, by allowing any reference type as element.

Accordingly, the instruction set is extended with instructions for manipulating table slots
(table.get and table.set) and table size (table.size and table.grow), the latter being analogous to
the existing instructions for memories.\footnote{The ability to mutate tables and their size always existed in Wasm, but was previously only accessible through the host-side
API.}

Threads. Wasm support for threading with shared-state concurrency and atomics is added by
another language proposal [Smith 2018]. The current proposal only supports shared linear memory,
but here we generalise it to globals, tables, and references, since such further extensions are on
Wasm’s long-term roadmap, and we aim to have a formalism that can handle the full enchilada
seamlessly. In Fig. 2, all respective extensions are highlighted in red.

Sharing. Unlike most other languages, concurrent Wasm is explicit about which objects can be
shared between threads, and which ones are only accessed in a thread-local manner. Accordingly,
all definitions and references are complemented with a sharing annotation sh. These annotations
make it easy for engines to pick the most efficient compilation scheme for each access to mutable
state, for example, by avoiding unnecessary barriers. Validation (see supplemental material) ensures
that annotations are consistent and transitive, e.g., a shared reference can only refer to shared
definitions.

Atomics. In order to enable synchronisation between multiple threads, concurrent Wasm in-
corporates the ability to specify an ordering constraint (or consistency mode) for instructions that
access a program’s state. In the current proposal, which follows JavaScript in that regard, only
two modes are supported: non-atomic unordered access (unord) and sequentially consistent atomic
access (seqcst). Additional atomic consistency modes like acquire/release may be added as future
extensions.

An ordering annotation is included in instructions for accessing the Wasm memory (t.load,
t.store), as well as instructions accessing global variables (global.get, global.set) and table slots,
including indirect calls (table.get, table.set, call_indirect). In addition, the language offers an
atomic read-modify-write instruction (t.rmw) for memory access, where the modification can be

Vol. 1, No. 1, Article . Publication date: June 2019.
Fig. 3. Runtime structure

drawn from a large set of binary numeric operators binop, whose definition we omit here. It also provides a pair of low-level wait and notify instructions that block a thread and resume blocked threads, respectively, indexed on a memory location.

Host Instructions. Although not part of the current threading proposal, which assumes that threads are only created by the host environment, we also include an instruction for spawning a thread from a function (fork). In addition, we provide a pseudo instruction (instantiate) for instantiating and linking a module [Haas et al. 2017].

Including these two instructions allows us to express all interesting effects that can be performed by the host environment – in particular, the dynamic creation of threads and the dynamic allocation of new pieces of shared state (including new memories, i.e., address spaces) – as Wasm code. That in turn enables us to model all relevant host computation as Wasm computation, and all interesting interactions with host threads can be expressed as interaction with other Wasm threads.

4 OPERATIONAL SEMANTICS

The execution semantics of concurrent Wasm is defined in two layers: an operational semantics, specifying execution of individual instructions (described in this Section), and an axiomatic semantics, specifying the interaction with the memory (described in Section 5). Both interact through events that are generated by the operational semantics and “wired up” by the axiomatic semantics.

Configurations. The operational semantics is defined via two small-step reduction relations: (1) reduction of local configurations, i.e., individual threads, and (2) reduction of global configurations, i.e., the entire program state. Their definitions are given in Fig. 3.

\[
\text{(global configuration)} \quad \text{conf} \ ::= \ s; p^* \\
\text{(local configuration)} \quad \text{lconf} \ ::= \ s; f; e^* \\
\text{(address)} \quad a \ ::= \ (e^*)_h \\
\text{(time stamp)} \quad h \ ::= \ \{\text{module } m, \ \text{local } v^*\} \\
\text{(threads)} \quad p \ ::= \ (e^*)_h \\
\text{(frames)} \quad f \ ::= \ {\text{func } a^*, \ \text{global } a^*, \ \text{table } a^?, \ \text{mem } a^?} \\
\text{(module instances)} \quad m \ ::= \ {\text{func } a^*, \ \text{global } a^*, \ \text{table } a^?, \ \text{mem } a^?} \\
\text{(store)} \quad s \ ::= \ {(a obj)^*} \\
\text{(instance objects)} \quad \text{obj} \ ::= \ \text{func } m \text{ func } | \ \text{global } g t \ | \ \text{table } t t \ | \ \text{mem } m t \\
\text{(administrative instr’s)} \quad e \ ::= \ \ldots | \ \text{ref } a | \ \text{trap} | \ \text{call’ } a | \ \text{fork’ } e^* | \ \text{wait’ } l n | \ \text{notify’ } l n m \quad \text{(where func is not an import and has no exports)} \\
\text{(values)} \quad v \ ::= \ nt.const \ c | \ \text{ref.null} | \ \text{ref } a \\
\text{(store values)} \quad w \ ::= \ b \ | \ v \\
\text{(events)} \quad \text{ev} \ ::= \ (act^*)_h \ | \ e \\
\text{(actions)} \quad \text{act} \ ::= \ \text{rd}_{ord} \ l \ w^* \ | \ \text{wr}_{ord} \ l \ w^* \ | \ \text{rmw} \ l \ w^m \ w^m \\
\text{(field)} \quad \text{fld} \ ::= \ v a l \ | \ d a t a \ | \ e l e m \ | \ l e n g t h \\
\text{(region)} \quad r \ ::= \ a.fld \\
\text{(location)} \quad l \ ::= \ r \ | \ r[i] \\
\text{(thread context)} \quad P \ ::= \ p^* \ [_] \ p^* \\
\]
Global configurations consist of a set of threads \(p^* \), each represented by its remaining instruction sequence, annotated by a time stamp \(h \) whose explanation we defer to Section 5, and the global program store \(s \), which records all abstract instance objects that have been created (i.e., allocated) by the program. These objects are the runtime instances of all entities that can be defined and \(\text{ex/} \text{imported} \) by modules, i.e., functions, globals, tables, and memories. Every object is identified by a unique abstract address \(a \) in the store. We write \(s(a) \) for the object associated with \(a \) in the store \(s \).

Local configurations consist of the store, the frame \(f \) of the current function, and the instruction sequence \(e^* \) left to execute. The frame records the module instance a function resides in and the state of its local variables.

Actions and Events. We make a key generalisation of existing work by defining actions, which record an individual access to shared state, and events, which are the units ordered by the consistency predicate of the axiomatic semantics, as distinct formal objects. Existing formal memory models implicitly unify these, but in our model a single event may contain multiple actions, which are all considered to be performed atomically. Both are also defined in Fig. 3. Like threads, events are annotated with a time stamp, a matter we will explain in Section 5. Per convention, we implicitly identify all events \((h) \) with no action with the empty event \(\epsilon \).

Intuitively, actions express those store operations that can be reordered, subject to certain conditions that the axiomatic semantics defines. An action can be one of three flavours of access to a mutable location \(l \): read (\(\text{rd} \)), write (\(\text{wr} \)), or atomic read-modify-write (\(\text{rmw} \)). In each case the action records the sequence of store values \(w^* \) read or written – or both in the case of read-modify-write. Reads and writes may be annotated with different consistency modes; as a convention, we abbreviate \(\text{rd}_{\text{unord}} \) and \(\text{wr}_{\text{unord}} \) to just \(\text{rd} \) and \(\text{wr} \), respectively.

A location describes the component of an instance object that is being accessed. It is given as an abstract address \(a \) paired with a virtual field name \(\text{fld} \). Globals only have a val field that is their current value. Tables and memories both have a len field storing their current size, and an elem field (for tables) or data field (for memories) that denotes the respective content. The latter are vectors of store values (references for elem, bytes for data). Hence a location in these fields additionally involves an offset \(i \).

Local Reduction. The local reduction relation is labelled by sets of actions. Fig. 4 shows a selection of all local reduction rules that touch the store. Rules for constructs missing from the figure do not access the store and hence carry over unchanged from [Haas et al. 2017].

Let us start with the simplest rules, those for accessing globals (\(\text{global.get, global.set} \)). They look up the address \(a \) of the global under its static index \(i \) in the current frame’s module instance and then perform a single action to read or write the val field of that global, with the appropriate memory ordering. The respective value \(v \) that is observed by these actions is picked non-deterministically in these rules, but the axiomatic semantics will constrain this choice such that each read matches up with some write to the same location (Section 5).

Accessing tables (\(\text{table.get, table.set} \)) is more interesting. It involves an index that could be out of bounds, but the bounds may be dynamically altered by the execution of a \(\text{table.grow} \) instruction. It is here where multiple actions per event come into play, because such an access involves an observable access to the table’s len field as well, to check its size.\(^3\) The size is a value of the form \((\text{i32.const } n) \), which we abbreviate to \(n \) here. If \(n \leq i \) then the access is out of bounds and execution traps. Otherwise, the actual read or write action for the table slot at the indexed location is also performed. Both these actions are to be performed as one atomic event. However, the bounds check

\(^3\)An implementation might use more efficient ways to implement this check, e.g., via hardware protection, but the semantics must be the same.
\[f; (\text{ref.func}\ i) \quad \text{\textarrow{\leftarrow}} \quad \text{ref} f_{\text{func}}(i) \]
\[f; (\text{call}\ i) \quad \text{\textarrow{\leftarrow}} \quad \text{call'} f_{\text{func}}(i) \]
\[s; f; (\text{i32.const}\ i) (\text{call indirect}.\text{ord} f) \quad \text{\textarrow{\leftarrow}} \quad r^d a.\text{len} n (\text{trap} (\text{if} a = f_{\text{table}} \land i \geq n)) \]
\[s; f; (\text{i32.const}\ i) (\text{call indirect}.\text{ord} f) \quad \text{\textarrow{\leftarrow}} \quad r^d a.\text{len} n (\text{trap} (\text{if} a = f_{\text{table}} \land i < n \land \text{type}(s(a')) \neq f_{\text{func}})) \]
\[s; f; (\text{i32.const}\ i) (\text{call indirect}.\text{ord} f) \quad \text{\textarrow{\leftarrow}} \quad r^d a.\text{len} n (\text{trap} (\text{if} a = f_{\text{table}} \land i < n \land \text{type}(s(a')) = f_{\text{func}})) \]
\[s; v^n (\text{call'} a) \quad \text{\textarrow{\leftarrow}} \quad \text{frame}_m\{\text{module}\ m, \text{local}\ v^n (t.\text{const} 0)^k\} e^n \text{ end} \]
\[s; f; v (\text{global.set}.\text{ord} i) \quad \text{\textarrow{\leftarrow}} \quad l_{\text{ord} a.\text{len} v} (\text{if} a = f_{\text{global}}(i)) \]
\[s; f; (\text{global.get}.\text{ord} i) \quad \text{\textarrow{\leftarrow}} \quad l_{\text{ord} a.\text{len} v} (\text{if} s \vdash v : t \land \text{type}(s(a)) = \text{sh} t^n [n'] \land a = f_{\text{table}}(i)) \]
\[s; f; (\text{i32.const}\ i) v \text{ table.set.ord} \]
\[s; f; (\text{i32.const}\ i) v \text{ table.set.ord} \]
\[s; f; (\text{i32.const}\ i) \text{ table.get.ord} \]
\[f; (\text{table.size}\ k) v \text{ table.grow} \]
\[f; (\text{i32.const}\ k) v \text{ table.grow} \]
\[f; (\text{i32.const}\ k) (t.\text{load}.\text{ord} pt a o) \]
\[f; (\text{i32.const}\ k) (t.\text{load}.\text{ord} pt a o) \]
\[f; (\text{i32.const}\ k) (t.\text{store}.\text{ord} sz a o) \]
\[f; (\text{i32.const}\ k) (t.\text{store}.\text{ord} sz a o) \]
\[f; (\text{i32.const}\ k) (t.\text{rmw}.\text{op} pt a o) \]
\[f; (\text{i32.const}\ k) (t.\text{rmw}.\text{op} pt a o) \]
\[f; \text{memory.size} \]
\[f; (\text{i32.const}\ k/\text{64 Ki}) \text{ memory.grow} \]
\[f; (\text{i32.const}\ k/\text{64 Ki}) \text{ memory.grow} \]
\[f; (\text{i64.const}\ q) (t.\text{const}\ c) (\text{i32.const}\ k) \text{ t.wait} \]
\[f; (\text{i64.const}\ q) (t.\text{const}\ c) (\text{i32.const}\ k) \text{ t.wait} \]
\[f; (\text{i64.const}\ q) (t.\text{const}\ c) (\text{i32.const}\ k) \text{ t.wait} \]
\[f; (\text{i64.const}\ q) (t.\text{const}\ c) (\text{i32.const}\ k) \text{ t.wait} \]
\[f; (\text{i32.const}\ m) (\text{i32.const}\ k) \text{ notify} \]
\[s; f; v^n (\text{fork}\ i) \quad \text{\textarrow{\leftarrow}} \quad \text{fork'} v^n (\text{call'} a) \]
\[s; (\text{ref}\ a_i)^* (\text{instantiate}\ \text{mod}) \quad \text{\textarrow{\leftarrow}} \quad \text{wr} l^n w^n (s\ (\text{obj})^*; (\text{ref}\ a_k)^* \]
\[\text{(side conditions omitted)} \]

Fig. 4. Local reduction (excerpt)
per se is unordered. Hence, bounds checks are permitted to observe changes to the table size with a semantics that is not sequentially consistent, for reasons which will be justified in Section 5.
In contrast, explicitly querying the size of a table (\texttt{table.size}) performs a seqcst atomic read of the length. Similarly, growing the table (\texttt{table.grow}) performs an atomic read-modify-write of the length field. Consequently, \texttt{table.grow} is sequentially consistent with respect to itself and to \texttt{table.size}. In addition, \texttt{table.grow} performs writes initialising all newly created locations. It can also fail non-deterministically (due to resource exhaustion), in which case nothing is modified.

Loads and stores to memory (\texttt{t.load}, \texttt{t.store}) work analogously to table accesses, except that they (1) add an additional static offset \(o\), and (2) operate on a sequence of multiple bytes at once and interconvert to a numeric value, by interpretation through the meta function \(\text{bits}()\) [Haas et al. 2017]. The latter has the additional implication that the axiomatic semantics allows non-atomic accesses to \texttt{tear}, i.e., reads can observe individual bytes from multiple different writes. Instructions manipulating memory size (\texttt{memory.size}, \texttt{memory.grow}) are similar to the table analogues, the only complication being that size values are given in units of page size, which is 64 KiB.

\[
\begin{align*}
\text{fork} &:\ s; f_e; e^* \xrightarrow{act} s'; f_e; e'^* \quad h <_{hb} h' \quad (\text{addr}(act) \in s)^*
\end{align*}
\]

\[
\begin{align*}
\text{wait} &:\ s; (e^*_h) p^* \xrightarrow{(act)h'} s'; (e'^*_h) p^* \\
&\quad h <_{hb} h'
\end{align*}
\]

\[
\begin{align*}
\text{notify} &:\ s; (E[\text{fork'} e^*])_h p^* \leftrightarrow s'; (E[e])_{h'} (e^*_h) p^*
\end{align*}
\]

\[
\begin{align*}
&n < m \\
&h <_{hb} h'
\end{align*}
\]

\[
\begin{align*}
&n = m \vee \neg \exists E', h', q, h' <_{hb} h \wedge (E'[\text{wait'} l q])_{h'} \in p^*
\end{align*}
\]

\[
\begin{align*}
&\text{signed}(q) \geq 0 \\
&h <_{hb} h'
\end{align*}
\]

\[
\begin{align*}
&s; (E[\text{wait'} l q])_h p^* \leftrightarrow s; (E[\text{i32.const 2}])_{h'} p^*
\end{align*}
\]

Fig. 5. Global reduction

The next bunch of instructions (\texttt{wait}, \texttt{notify}, \texttt{fork}) are related to threads. Their semantics is mostly defined by the global reduction relation, while the local relation only handles their operands and respective side conditions. To that end, these instructions are reduced to auxiliary \textit{administrative} variants that carry the final operands, to be picked up by global reduction. The \texttt{t.wait} instruction performs a bounds-checked read and suspends if the read value equals the operand, or immediately returns 1 otherwise. It traps if the access is out of bounds or unaligned (a behaviour chosen to align with common hardware). Suspending is represented by the administrative variant \texttt{wait'} that records the location and the time-out value \(q\) (in nanoseconds). The symmetric operation is \texttt{notify}, which, given a memory index \(k\) and a number \(m\), will notify at most \(m\) threads waiting for the same location to wake them up. This is analogously modelled by an administrative variant \texttt{notify'} recording the location, the number \(n\) of woken threads (0 initially) and the maximum \(m\). The \texttt{fork} instruction performs a function call in a new thread by looking up the function in the local frame and then forking the actual call via the auxiliary \texttt{fork'}.

Lastly, the \texttt{instanitate} instruction creates a new module instance. It takes a reference for each import, allocates and initialises the instance objects attached to the module, and returns a reference for each export. It is this instruction that extends the store with new objects. Details can be found in the supplemental material.
Global reduction. Fig. 5 defines global reduction. In all rules we assume that the sequence \(p' \) is in fact a set that can be implicitly reordered.

The main rule non-deterministically selects a thread and advances it one step by invoking the local reduction relation with an empty frame \(f_e \). The previous time stamp \(h \) of the thread is replaced with a newer \(h' \), which also is taken as the time stamp of the atomic event formed by the performed actions. As we will see soon, it is this condition that imposes program order on all events within the same thread. Another side condition checks that the actions only refer to object addresses that have previously been allocated in the store, ensuring respective causality.

The effect of the *fork'* instruction is to simply add a new thread to the configuration. Both the new and the originating thread will be assigned the same new time stamp \(h' \).

The interaction between *wait'* and *notify'* on a common location \(l \) is modelled by a kind of reaction rule. It reduces *wait'* to the result 0, which indicates successful notification to the program, thereby waking up the thread for future local reductions. This time, the side condition \(h <_{hb} h' \) enforces an ordering relation between the thread performing the notification (at time \(h' \)) and the thread woken up (which was suspended earlier at time \(h \)). The *notify'* instruction keeps iterating with an increased wake count \(n \). Once \(n \) reaches \(m \), or no more matching waits can be found, the next rule finalises the operation and returns \(n \).

A *wait'* instruction may also time out, if (the signed interpretation of) its time-out value is not negative (indicating infinite timeout). Since there is no consistent notion of execution speed across platforms, time-out is simply modelled as a non-deterministic reduction in the semantics; a result of 2 indicates this outcome to the program.

Auxiliary definitions:

\[
\begin{align*}
\text{ord}(\text{rd}_o \ l \ w^*) &:= o & \text{loc}(\text{rd}_o \ l \ w^*) &:= l & \text{size}(\text{rd}_o \ l \ w^*) &:= n \\
\text{ord}(\text{wr}_o \ l \ w^*) &:= o & \text{loc}(\text{wr}_o \ l \ w^*) &:= l & \text{size}(\text{wr}_o \ l \ w^*) &:= n \\
\text{ord}(\text{rmw} \ l \ w^* \ w^*_1) &:= \text{seqcst} & \text{loc}(\text{rmw} \ l \ w^* \ w^*_1) &:= l & \text{size}(\text{rmw} \ l \ w^* \ w^*_1) &:= n \\
\text{read}(\text{rd}_o \ l \ w^*) &:= w^* & \text{write}(\text{rd}_o \ l \ w^*) &:= \epsilon \\
\text{read}(\text{wr}_o \ l \ w^*) &:= \epsilon & \text{write}(\text{wr}_o \ l \ w^*) &:= w^* \\
\text{read}(\text{rmw} \ l \ w^* \ w^*_1) &:= w^*_1 & \text{write}(\text{rmw} \ l \ w^* \ w^*_1) &:= w^*_2 \\
\text{addr}(\text{act}) &:= \text{addr}(\text{region}(\text{act})) & \text{region}(\text{act}) &:= \text{region}(\text{loc}(\text{act})) & \text{offset}(\text{act}) &:= \text{offset}(\text{loc}(\text{act})) \\
\text{addr}(l) &:= \text{addr}(\text{region}(l)) & \text{region}(l) &:= r & \text{offset}(r) &:= 0 \\
\text{addr}(a_{\text{rd}}) &:= a & \text{region}(r[i]) &:= r & \text{offset}(r[i]) &:= i \\
\text{range}(\text{act}) &:= [\text{offset}(\text{act}), \text{offset}(\text{act}) + \text{size}(\text{act})[\\
\text{reading}(\text{act}) &\iff\text{read}(\text{act}) \neq \epsilon \\
\text{writing}(\text{act}) &\iff\text{write}(\text{act}) \neq \epsilon \\
\text{aligned}(\text{act}) &\iff\exists n. \text{offset}(\text{act}) = n \cdot \text{size}(\text{act}) \\
\text{tearfree}(\text{act}) &\iff\text{ord}(\text{act}) = \text{seqcst} \lor (\text{aligned}(\text{act}) \land \text{size}(\text{act}) \leq 4) \\
\text{same}(\text{act}_1, \text{act}_2) &\iff\text{region}(\text{act}_1) = \text{region}(\text{act}_2) \land \text{range}(\text{act}_1) = \text{range}(\text{act}_2) \\
\text{overlap}(\text{act}_1, \text{act}_2) &\iff\text{region}(\text{act}_1) = \text{region}(\text{act}_2) \land \text{range}(\text{act}_1) \cap \text{range}(\text{act}_2) \neq \emptyset \\
ev_1 < ev_2 &\iff\text{time}(ev_1) < \text{time}(ev_2) \\
time((\text{act}^*)_h) &:= h \\
\text{access}_s((\text{act}^*)_h) &:= \text{act'} \text{ iff } \{\text{act'}\} = \{\text{act} \in \text{act}^* \mid \text{region}(\text{act}) = r\} \\
f_e(ev) &:= f(\text{access}_s(ev)) \\
f_e(Ev) &:= \{ev \in Ev \mid f_e(ev)\}
\end{align*}
\]

Fig. 6. Axiomatic memory model, auxiliary definitions
Terminal configuration:
\[\begin{align*}
\phi_{\text{term}} & ::= \nu^* \mid \text{trap} \mid E[(\text{suspend } n \ l)] \\
\conf_{\text{term}} & ::= s;\phi_{\text{term}}
\end{align*} \]

Can synchronise with:
\[\text{sync}_r(ev_1, ev_2) \iff \text{ord}_r(ev_1) = \text{ord}_r(ev_2) = \text{seqcst} \land \text{same}_r(ev_1, ev_2) \]

Trace:
\[\begin{align*}
\emptyset \text{ traces } \conf_{\text{term}} \quad \text{conf} \rightarrow^{ev} \text{conf}' \quad \text{tr traces } \conf'
\end{align*} \]

Valid trace:
(Note: by construction, \(\lesssim_{\text{hb}} \subseteq \lesssim_{\text{tot}} \))
\[\begin{align*}
\forall r, \iota_r \text{ tr valid} & \implies \iota_r \text{ tr valid} \\
\forall ev_R \in \text{reading}_r(tr), \exists ev^*_W, \iota_r \text{ ev}_R \text{ reads-each-from } ev^*_W & \\
\forall ev_l, ev \in tr, \text{ord}_r(ev_l) = \text{init} \land ev_l \neq ev \land \text{overlap}_r(ev_l, ev) \implies ev_l \lesssim_{\text{hb}} ev & \iota_r \text{ tr valid} \\
\forall i < |ev^*_W|, \iota_r \text{ ev}_R \text{ reads-from } (ev^*_W[i]) & \\
\text{tr } \iota_r \text{ ev}_R \text{ no-tear } ev^*_W & \\
\text{ev}_R \neq ev_W & \iota_r \iota_r^{l,k} \text{ ev}_R \text{ value-consistent } ev_W \\
\text{ev}_W \in \text{writing}_r(tr) & \iota_r \iota_r^{l,k} \text{ ev}_R \text{ hb-consistent } ev_W \quad \text{tr } \iota_r \text{ ev}_R \text{ sc-last-visible } ev^*_W \\
\text{tr } \iota_r \text{ ev}_R \text{ reads-from } ev_W & \\
\text{read}_r(ev_R)[i] = \text{write}_r(ev_W)[j] & \\
k = \text{offset}_r(ev_R) + i = \text{offset}_r(ev_W) + j & \\
\text{tr } \iota_r^{l,k} \text{ ev}_R \text{ value-consistent } ev_W \\
\neg(ev_R \lesssim_{\text{hb}} ev_W) & \forall ev'_W \in \text{writing}_r(tr), ev_W \lesssim_{\text{hb}} ev'_W \implies ev_W \lesssim_{\text{hb}} ev'_W \equiv k \notin \text{range}_r(ev'_W) \\
\text{sync}_r(ev_W, ev'_W) \implies ev_W \lesssim_{\text{hb}} ev_R & \forall ev'_W \in \text{writing}_r(tr), ev_W \lesssim_{\text{hb}} ev'_W \implies ev_W \lesssim_{\text{hb}} ev'_W \equiv k \notin \text{range}_r(ev'_W) \\
\forall ev'_W \in \text{writing}_r(tr), ev_W \lesssim_{\text{hb}} ev_R & \\
ev_W \lesssim_{\text{tot}} ev'_W \lesssim_{\text{tot}} ev_R \land \text{sync}_r(ev_W, ev_R) \implies \neg \text{sync}_r(ev'_W, ev_R) & \\
ev_W \lesssim_{\text{hb}} ev'_W \lesssim_{\text{tot}} ev_R \implies \neg \text{sync}_r(ev'_W, ev_R) & \text{(†)} \\
ev_W \lesssim_{\text{tot}} ev'_W \lesssim_{\text{hh}} ev_R \implies \neg \text{sync}_r(ev_W, ev'_W) & \text{(‡)} \\
\text{tr } \iota_r \text{ ev}_R \text{ sc-last-visible } ev_W & \\
tearfree_r(ev_R) \implies |\{ev_W \in ev^*_W \mid \text{same}_r(ev_R, ev_W) \land \text{tearfree}_r(ev_W)\}| \leq 1 & \text{tr } \iota_r \text{ ev}_R \text{ no-tear } ev^*_W
\end{align*} \]

Fig. 7. Axiomatic memory model
5 AXIOMATIC MEMORY MODEL

As discussed earlier, the top-level intuition for an axiomatic memory model is that the operational semantics generates a set of events, which is then subject to a consistency predicate that classifies whole executions as either valid or invalid. Fig. 6 and Fig. 7 define everything that is needed for our axiomatic semantics. Unlike the C++ semantics, but like the JavaScript one, our semantics does not introduce undefined behaviour.

Time Stamps. The C++ and JavaScript memory models capture the ordering of events by defining various post-hoc relations over the event set as part of a candidate execution (see Section 2). This results in a graph structure, where the vertices are memory events, with the operational semantics fixing some edges such as sequenced-before, while some others are non-deterministically picked in the candidate execution and are later constrained by the axiomatic semantics, such as reads-from.

We instead chose to adopt a more compact representation based on time stamps, in the style of the promising semantics [Kang et al. 2017] or the OCaml memory model [Dolan et al. 2018]. This is equivalent to defining an explicit graph, but has the advantage that the operational semantics does not need to manipulate graph edges. Our time stamps are drawn from an infinite set of abstract objects that is equipped with an a priori partial order (written \(<_{hb}\), pronounced "happens before") corresponding to the happens-before relation, as well as a total order (\(<_{tot}\), pronounced "tot"), corresponding to a total memory order such that \(<_{hb}\subseteq <_{tot}\). Our operational semantics (Section 4) assigns time stamps to events eagerly but non-deterministically. Individual threads keep track of the time stamp of their last emitted event, and force future same-thread events to be ordered later by \(<_{hb}\), mimicking the effect of explicit sequenced-before edges. Otherwise, the time stamp choices are constrained by various ordering conditions imposed in the axiomatic semantics. Therefore, a Wasm candidate execution consists of a set of time stamped events, and is valid if the time stamps are chosen such that the axiomatic model is satisfied. In valid executions, all events have distinct time stamps.

Our definition of \(<_{hb}\) also allows us to avoid the clumsy inter-thread synchronisation specification mechanisms of C++ and JavaScript, which rely on an additional-synchronizes-with relation to specify the effects of mutexes and other thread-blocking primitives on the axiomatic model [Batty et al. 2011]. For example, when thread A executes notify', waking wait'-ing thread B, the respective reduction rule (Fig. 5, 3rd rule) specifies that thread B must advance its "last observed" time stamp to that of A, meaning that all subsequent events from B will observe previous events from A. In this capacity, time stamps function as a Lamport clock [Lamport 1978].

Traces. As seen in Section 4, our (global) small-step reduction relation is labelled with (possibly empty) events. An execution trace can be defined as the set of events generated by the coinductive closure of the reduction relation, as per the traces relation defined in Fig. 7. This relation is satisfied by all finite, terminated traces, but also by all infinite traces of non-terminating programs. The consistency predicate for a valid execution can then be defined over these traces.

Because we do not model garbage collection of store objects or terminated threads, the store s and the "list" of threads \(p^*\) in configurations considered in the fixpoint of a trace could become infinitely large. By slight abuse of notation, we take their “grammar” given in Fig. 3 to actually define these components as proper mathematical sets.

Validity. The valid predicate encodes the conditions under which a trace is considered a valid execution. Observations made by individual unord reads confer no guarantees to the rest of the program. By contrast, a seqcst read confers additional guarantees (synchronisation) if and only if it reads from a seqcst write of equal range. If this condition is not fulfilled, such a read-write pair is treated identically to the unord case. Synchronisation is captured by the sync predicate,
which expresses the circumstances under which a pair of accesses may restrict which writes are observable in the rest of the program. Note that this predicate requires both accesses to be seqcst and access the same location range. No guarantee is given between memory reads and writes of mixed size; as explored in recent work [Flur et al. 2017], mixed size guarantees are surprisingly weak on hardware, so Wasm (like JavaScript) picks a maximally weak (but defined) semantics.\(^4\)

The model’s sub-conditions are named so as to be analogous to the prose JavaScript model we present in Section 2.2. We make a few simplifications in the formalism, such as inlining the synchronizes-with relation as condition \(\text{sync}(\text{ev}_R, \text{ev}_W) \Rightarrow \text{ev}_W \prec \text{hb} \text{ev}_R\) in the reads-from relation.

Another difference is that our quantification over “regions”, \(r\), captures not only that reads-from related events must access the same memory, but also that they must also access the same field. For regular memories, the two possible fields are data, representing the values of memory locations, and len, representing the memory’s current length. Analogously, tables have an elem field representing the array of reference values and len for their current lengths. Globals only have a value field, representing the current value they hold. All these fields are handled uniformly by the semantics.

Thin-Air Behaviour. Unlike C++, every well-typed Wasm program has a well-defined semantics. Racing non-atomics will not trigger undefined behaviour in the C++ sense. However, the defined semantics in this case is very weak, to the point that it is still recommended for Wasm programs to be race-free. For example, Wasm non-atomics are specified weakly enough to exhibit out-of-thin-air behaviours when racing [Batty et al. 2015]. These behaviours are known to impair modular reasoning about program properties [Batty et al. 2013; Ševčík 2011]. However, unlike relaxed atoms, the C++ primitive that results in out-of-thin-air executions, it is reasonable to expect that a Wasm program should contain no data races on non-atomics, since the source program it was compiled from will disallow this. At least for Wasm code generated from C++, a data race will trigger undefined behaviour at the source-level, meaning that all Wasm programs generated from well-defined C++ should already be data-race-free. Moreover, we guarantee that all observed references have actually been allocated (Fig. 5), while C++ is ambiguous as to the thin-air behaviour of pointers.

Even in the case that a data race does occur, such races are bounded in space [Dolan et al. 2018] by the Wasm semantics, meaning that, unlike C++, a data race can only have an effect on the values read from the location it occurs on.

Bounds Checks. As previously discussed, all Wasm accesses to memories or tables are bounds checked, and any out-of-bounds access will immediately trap. There have been ongoing discussions with implementers regarding how they expect to be able to compile Wasm accesses to memories and tables, considering their bounds-checking behaviour [bli [n. d.]]. As noted in the threads proposal [Smith 2018] it is inevitable that some platforms will have to compile explicit bounds checks, where a large section of memory is pre-allocated, and a real memory location is used to store the current maximum bound. This way, a \text{memory.grow} or \text{table.grow} instruction can be

\(^4\)As our formal understanding of mixed-size accesses grows, it may become possible for us to give more guarantees.
implemented as a simple atomic increment of this location, without the need for further allocation. All compiled Wasm accesses are then guarded by a conditional jump to a trap procedure based on the current value of this location.

This leads to a natural view of a WebAssembly memory and table instruction as abstractly carrying out up to two accesses. As well as accessing data in memory, the instruction will also access a distinguished “length” location, to perform the bounds check. Both accesses are potentially subject to relaxed behaviour, since implementers wish to compile this bounds check as a bare architectural load with few ordering guarantees, for efficiency reasons.

We use this scheme as the basis for our formal specification of the relaxed behaviour of bounds checking, considering it the weakest discipline we are prepared to support. As detailed in Section 12, Wasm unord accesses correspond to bare architectural load/stores. We model the bounds check on each instruction as an additional unord access to a distinguished len abstract location. The memory.grow and table.grow instructions are modeled with an atomic rmw increment, and explicit memory.size or table.size checks are modeled as atomic reads of the len location. This means that explicit length checks (for example to ensure that a trap does not occur later in the code) guarantee that subsequent instructions will observe the same (or greater) length, and all side-effects from instructions before the last growth. However, implicit observations about the length, through the success or failure of bounds checks, guarantee no synchronization whatsoever.

This can be justified at two levels. First, any program fragment observing relaxed behaviour in its bounds checks must have a race between a memory.grow/table.grow in one thread and a regular access in another thread, such that this access is out-of-bounds “before” the grow but in-bounds “after”. Even forgetting about relaxed behaviour, such a program is clearly wrong, and will exhibit executions which trap, depending on the interleaving of the two threads. We are not interested in providing strong guarantees for such programs when it may restrict our range of implementation choices and optimisations, or complicate the model. For an access which is out-of-bounds before a racing grow “commits”, but is in-bounds after, our semantics makes it entirely non-deterministic whether the access will succeed or trap, independent of the success or failure of other accesses.

Second, this scheme, implemented on real architectures, genuinely exhibits some counter-intuitive relaxed behaviours. We give a example of this on the ARM architecture, in Fig. 8. The execution was verified using the rmem tool [Gray et al. 2015], which can explore and visualise the possible relaxed behaviours of program fragments in various architectures. This example majorly abstracts the precise code that would be generated for a Wasm program, but is sufficient to show the weakness of bounds checking behaviour. Thread 0 abstracts a Wasm thread containing an unord store, followed by memory.grow, which is represented as a store of the new length, guarded by a barrier. Compilation of a real Wasm program would generate an atomic read-modify-write here, however only the initial barrier and the write are relevant to the consistency behaviour of this example. Thread 1 represents a bounds check-guarded unord load which is racing with the memory.grow. After the load of the memory size, there is a conditional branch to a trap label which will carry out error-handling in the case that the access is out of bounds. The precise condition of the branch is not relevant to the example’s consistency behaviour, so we choose CBZ for brevity. The rmem tool shows that the ARM memory model allows the execution depicted, where despite a barrier and control dependency, it is possible for access d to read 0.

More efficient compilation schemes for bounds checks involving trap handlers are also in the process of implementation in production engines. These implementations allow Wasm accesses to be compiled without explicit bounds checks, and instead relies on catching and handling OS/CPU faults to detect out-of-bounds accesses. This approach is expected by implementers to be at least as strong as the naïve strategy. However such implementations are difficult to reason about formally, as discussed in Section 7.2.
Weakening WebAssembly (Extended Draft) 19

\[
\begin{align*}
\text{ev} \in tr & \quad \text{ev'} \in tr & \quad \neg \text{sync}_r(\text{ev}, \text{ev'}) \\
\vdash_r \text{ev data-race-with ev'} & \quad \vdash_r \text{ev race-with ev'} \\
\neg(\text{ev} \prec_{hb} \text{ev'} \lor \text{ev'} \prec_{hb} \text{ev}) & \quad \neg(\text{ev} \prec_{hb} \text{ev'} \lor \text{ev'} \prec_{hb} \text{ev}) \\
\text{writing}_r(\text{ev}) \lor \text{writing}_r(\text{ev'}) & \quad \text{overlap}_r(\text{ev}, \text{ev'}) \\
\vdash_r r \text{ev race-with ev'} & \quad \vdash_r \text{ev data-race-with ev'} \\
\forall r, \forall \text{ev} R \in \text{reading}_r(tr), \exists \text{ev}^*_W, tr \vdash_r \text{ev} R \text{seqcst-reads-each-from } \text{ev}^*_W \\
& \quad tr \vdash_r \text{ev} R \text{ seqcst-reads-from } \text{ev}_W \\
& \quad ev_W \prec_{tot} ev_R \quad ev_W \in \text{writing}_t(tr) \\
& \quad tr \vdash_r \text{ev} R \text{ value-consistent } ev_W \\
& \quad \forall ev'_W \in \text{writing}_t(tr), ev_W \prec_{tot} ev'_W \Rightarrow k \notin \text{range}_r(\text{ev}'_W) \\
& \quad tr \vdash_r \text{ev} R \text{ seqcst-reads-from } ev_W \\
\end{align*}
\]

Fig. 9. Formulation of the SC-DRF property

6 SEQUENTIAL CONSISTENCY OF DATA-RACE-FREE PROGRAMS

Sequential Consistency of Data-Race-Free programs (SC-DRF) is considered by many to be the desirable correctness property for a relaxed memory model [Adve and Hill 1990; Boehm and Adve 2008; Gharachorloo et al. 1992; Lahav et al. 2017]. A data-race-free program is one which does not have two non-atomic accesses, at least one of which is a write, in a race condition on the same memory location. SC-DRF guarantees that a program lacking such races will exhibit sequentially consistent behaviour, in the sense that the program will appear to execute as a naïve sequential interleaving of the operations of each thread, regardless of how weakly-specified its non-atomics are.

6.1 Wasm is SC-DRF

The axiomatic model presented in Fig. 7 is SC-DRF:

Proposition 6.1 (Wasm is SC-DRF).

\[
(\vdash r \text{tr valid}) \land \neg(\vdash r \text{tr data-race}) \implies \vdash r \text{tr is-seqcst}
\]

A proof of this property can be found in the appendix. The auxiliary relations data-race and is-seqcst are defined in Fig. 9. An execution is defined to have a data race if two events not related by \(\prec_{hb}\), at least one of which is a write, touch the same memory location with a non-seqcst consistency (denoted by the condition \(\neg \text{sync}_r(\text{ev}, \text{ev'})\)). Note that this definition considers seqcst accesses that overlap but do not have equal ranges as racy. This is consistent with the axiomatic model, which effectively degrades such accesses to unord. The is-seqcst condition requires that every read must observe the most recent write in the total order \(\prec_{tot}\).

6.2 JavaScript is not SC-DRF

The official specification for JavaScript claims that its relaxed memory model guarantees SC-DRF [ECMA International 2018]. However, we have identified two reasons why this is not the case.

As previously discussed in Section 2, the JavaScript model suffers from the SC-DRF violations previously identified in a draft version of the C++ model by Batty [Batty 2014; Batty et al. 2011].
Moreover, merely adapting the C++ model’s strengthening alone is not sufficient to enforce SC-DRF. The JavaScript model is additionally vulnerable to a novel counter-example which cannot be expressed in the formal C++ model, since it relies on an unordered (non-atomic) read observing a \texttt{seqcst} write. Fig. 10 shows such a counter-example; a JavaScript program that is data-race-free, but not sequentially consistent. While both atomic writes are guaranteed to occur before any non-atomic read of $x[0]$, no sequential interleaving can explain the fact that both reads are allowed to take different values. We have confirmed the validity of this execution using the EMME tool [Mattarei et al. 2018], a model checker for the (uncorrected) JavaScript memory model. To the best of our knowledge, this execution is not observable on any real hardware because of the coherence guarantees between two same-location atomic writes, which force the second thread to observe them as totally ordered. We have verified this in rmem for x86 and ARM, based on the compilation schemes laid out in Section 7.

6.3 Contrasting Wasm and JavaScript

Because Wasm and JavaScript are required to interoperate extensively on the Web, we must address how their memory models can be aligned. If the two conditions highlighted in Fig. 7, marked (†) and (‡), are removed from the Wasm model, this model becomes a superset of the uncorrected JavaScript one in the following sense:

\begin{proposition}
Taking a model without (†) and (‡), the data accesses of a Wasm program with no out-of-bounds trap errors will exhibit the same consistency behaviours as a JavaScript program carrying out equivalent accesses on a shared array buffer.
\end{proposition}

However, such a model is clearly not SC-DRF. We have engaged with ECMA TC39, the standards body for JavaScript, about the possibility of amending the JavaScript model to include (†) and (‡) as a strict strengthening of the existing model. The correctness of the (†) condition has already been extensively investigated for C++ [Batty 2014; Batty et al. 2012, 2011], and we believe that the (‡) condition, as its dual, is also supported by current compilation schemes, given that real hardware disallows our counter-example. The standards body has provisionally agreed to accept our proposed changes in a future edition of the standard, and we continue to investigate more formal guarantees of their correctness.

\textbf{Experimental Validation.} We have implemented an SMT-based litmus checking tool for the Wasm memory model, with and without (†) and (‡). The tool accepts small fragments of Wasm code written in an abstracted syntax, and computes and visualizes all valid executions. We expect that it will be useful in communicating the model to implementers and users, and can be used as an oracle for future testing of implementations.

Fig. 10. A data-race-free JavaScript program that is not sequentially consistent; \{load/store\} abbreviates Atomics.\{load, store\}, the thick line represents \texttt{synchronizes-with}, which ensures that no data race occurs.
Weakening WebAssembly (Extended Draft) 21

<table>
<thead>
<tr>
<th>C/C++11 operation</th>
<th>Wasm instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load (non-atomic)</td>
<td>t.load</td>
</tr>
<tr>
<td>Store (non-atomic)</td>
<td>t.store</td>
</tr>
<tr>
<td>Load Atomic (any consistency)</td>
<td>t.load.atomic</td>
</tr>
<tr>
<td>Store Atomic (any consistency)</td>
<td>t.load.atomic</td>
</tr>
<tr>
<td>Cmpxchg (any consistency)</td>
<td>t.rmw.cmpxchg</td>
</tr>
</tbody>
</table>

Fig. 11. Compilation of C/C++11 accesses to Wasm memory access (for appropriate Wasm type t)

We also implement a front-end that allows our tool to accept litmus tests written in (a subset of)\(^5\) the syntax used by the EMME tool. This allows us to experimentally validate both Proposition 6.2 and our tool, by running the test in both tools, and checking that both tools generate the same set of visible behaviours for each litmus.

The EMME implementers provide a number of hand-written litmus tests. We observe that Proposition 6.2 holds for all 21 tests that our parser currently supports.

7 COMPILATION

In this section we discuss Wasm compilation both in its capacity as a target language for C/C++, and as a “source” language compiled to platform assembly. We show that compilation of C/C++ accesses to Wasm is correct as a direct consequence of our SC-DRF result. We also motivate the correctness of Wasm to platform assembly schemes to the best of our ability, and describe several outstanding problems in the wider field of low-level relaxed memory research which will need to be solved in order to fully formalise the correctness of compilation of Wasm to platform assembly.

7.1 Compiling C/C++ to Wasm

The expected mapping of C/C++11 accesses to Wasm memory accesses is given in Fig. 11. (Thread-local storage will be compiled to Wasm globals, but we omit that case here.) The correctness of this mapping can be justified straightforwardly as follows. First, note that this mapping effectively treats weaker C/C++ atomic accesses as sequentially consistent (memory_order_seq_cst). Batty [Batty 2014] shows that C/C++ programs made up of such accesses are SC-DRF, and moreover that they admit all sequentially consistent executions. Since all valid C/C++ programs must be data-race-free, the compiled Wasm program will also be data-race-free, assuming that atomic locations are allocated to disjoint, aligned portions of the Wasm heap. Therefore, by our SC-DRF result (Section 6), the compiled Wasm program must have only SC executions, which must therefore be valid executions of the original C/C++ program.

Of course, this sketch only justifies a correctness result between the axiomatic parts of the C/C++ and Wasm memory access semantics. Full correctness of compilation relies on many operational aspects, such giving a scheme for C/C++ memory allocation (malloc/new) to be correctly implemented in Wasm. This is orthogonal to the relaxed memory model, and therefore not approached by this work. It should be noted that, given a correct implementation of C/C++ memory allocation in Wasm, the accesses of all valid programs will always be in-bounds.

Treating C/C++ relaxed atomics as strongly as sequentially consistent atomics when compiling to Wasm loses some efficiency, as it implies additional barriers when the resulting Wasm is further compiled to platform assembly, compared to directly compiling the original C/C++. This strengthening has been accepted practice when compiling C/C++ to the Web platform since at least 2015, through Emscripten and asm.js [Herman et al. 2014; ?]. Compiler optimisations prior to the final

\(^5\)The EMME litmus syntax allows written bytes to be represented by integer or float literals. For now, we only support the integer syntax. Additionally, we do not support JavaScript-level constructs such as for loops.
Wasm generation may still take advantage of weaker consistency modes, but it is true that this approach, while semantically simpler, leaves some performance on the table. The Wasm Working Group is open to the possibility of adding weaker consistency modes to the language in the future, which would improve on this. Such an extended model would require a more involved proof of correctness for C/C++ compilation.

7.2 Compiling Wasm to Hardware

The expected mapping of Wasm (and JavaScript) memory accesses is given in Fig. 12. These compilation schemes are identical to C/C++11 [Sewell and Sevcik 2016]. Accesses to globals and tables can be compiled in a similar manner.

Given the current state of the art in mixed-size concurrency research, it is difficult fully investigate the correctness of these compilation schemes. Almost all research into platform assembly relaxed memory models concerns only a non-mixed-size fragment. In fact, to the best of our knowledge, the only existing formal work on the correctness of a mixed-size compilation scheme is [Flur et al. 2017], which gives a sketch proof that a non-mixed-size correctness proof from C/C++ to Power (itself the product of at least two papers [Batty et al. 2012; ?]) can be generalized to a mixed-size correctness proof for a fictional “mixed-size C11”. This work is close to what we require, but, aside from our lack of an already mature proof to adapt, mixed-size C11 is less general than our model, as it only allows non-atomics to be mixed-size. Our model allows atomics to be mixed-size, although such accesses do not provide the same guarantees as non-mixed-size atomics (for example, mixed-size atomics are not related by sync in our model).

We can still give some limited intuition regarding the correctness of the scheme, as a guide for future proof. Considering a non-mixed-size fragment of our model (i.e. no overlapping accesses), our unordered accesses share a compilation scheme not only with C/C++ non-atomics, but also with C/C++ relaxed atomics, which are expected to be stronger, and our seqcst accesses share a compilation scheme with C/C++ sequentially consistent atomics, both of which must respect a total order. We expect that for such a fragment of Wasm, the correctness of our compilation scheme should be provable following a similar strategy to existing proofs of the correctness of the (non-mixed-size) C/C++ scheme.

Going beyond this fragment, our model’s mixed-size accesses have a very weak behaviour, with mis-aligned accesses effectively treated by our no-tear rule as being decomposed into independant byte accesses. This fits the architectural models proposed by [Flur et al. 2017], where mis-aligned architectural loads and stores are treated as being decomposed in the same way. The main remaining concern is aligned, but mixed-size accesses; for example, 32-bit and 64-bit accesses to the same location. The architectural models of [Flur et al. 2017] guarantee that such accesses experience a form of coherence, but there are some edge-cases that warrant further investigation. Our model deliberately chooses a behaviour here that we expect to be far weaker than the behaviour of...
real architectures; mixed-size seqct atomic accesses are effectively treated like unord non-atomic accesses for the purpose of sc-last-visible. This means two overlapping mixed-size accesses are not subject to coherence guarantees under any circumstances. There is room to strengthen this guarantee, but it would need to be motivated by additional investigation into the precise guarantees of mixed-size architectural models.

7.2.1 Bounds Checks. The discussion above has focussed purely on correctly compiling in-bounds accesses. We must also deal with the relaxed behaviour of access bounds checks. As previously discussed, our model supports an implementation where bounds checks are compiled as explicit non-atomic reads. In this case, compilation of bounds checks may be treated identically to compilation of data accesses, as the bounds check will be compiled as a bare architectural load (Fig. 12) followed by a conditional branch to code which handles the trap result. The correctness of this compilation scheme would therefore follow from the correctness of the compilation scheme for data accesses.

To the best of our knowledge, there is no existing concurrency-aware research that is capable of facilitating the verification of the more efficient “trap handler” implementations, since they rely on the concurrent (relaxed) semantics of memory protection behaviour in both the OS and the underlying architecture. However implementers are committed to ensuring that these implementations are at least as strong as the naïve strategy.

7.2.2 Wait/Wake. The wait/wake operations are not directly compiled as platform assembly, but are implemented using OS system calls. This is in common with other languages with these features such as Java, which guarantees similar synchronization. To the best of our knowledge, the formal correctness of these mappings has not been investigated in any language, but at least on Linux, suspending and waking a thread are documented as implying several strong barriers [?] which we expect to be sufficient to support our Wasm-level synchronization. Again, existing literature does not explore the relaxed behaviour of OS calls, which would be necessary for formal proof.

8 RELATED WORK

Our memory model follows the existing definitional presentations of the axiomatic relaxed memory models of Java [Cenciarelli et al. 2007; Manson et al. 2005] and C++ [Batty et al. 2011; Boehm and Adve 2008]. These existing works, and those that build atop them, are limited by the fact that the wider normative specifications that they are embedded within are not formal, meaning that a significant part of subsequent work involves defining an appropriate formal specification for the concurrent operational semantics and motivating its correctness. This was the case with the JinjaThreads project [Lochbihler 2018], which was the result of Java formalisation work spanning over fifteen years. Because the Wasm operational semantics is fully formal, all definitional work is already incorporated into the normative specification, paving the way for mature formal analyses of the memory model in future work.

Recent work criticising the state of the art in axiomatic memory models has focused on the semantics of race conditions and out-of-thin-air. It is a well-known result that current axiomatic models must choose between admitting out-of-thin-air executions, and requiring a less efficient compilation scheme [Batty et al. 2015; Ševčík and Aspinall 2008]. The models of high-level languages such as Ocaml [Dolan et al. 2018] and Java [Manson et al. 2005] have the freedom to choose a less relaxed semantics, as they are not chasing bare-metal performance. Lower-level languages such as C/C++ [Batty et al. 2015] admit out-of-thin-air executions in order to compile their weakest primitives to bare loads and stores [Batty et al. 2012; Sewell and Sevcik 2016; Vafeiadis et al. 2015]. Our model must be pragmatic in this regard, allowing out-of-thin-air executions for racing non-atomics. Due to the low-level nature of Wasm, implementers expect to compile its non-atomics to bare loads and stores. At the very least, we do not make racy non-atomics an undefined behaviour
in the style of C/C++, and a program without racing non-atomics will not admit thin-air executions as a consequence of our SC-DRF result.

We have begun to see a new generation of models with the explicit aim of disallowing out-of-thin-air while preserving efficient compilation schemes [Kang et al. 2017; Pichon-Pharabod and Sewell 2016; Podkopaev et al. 2018]. As these models become more mature, it may be possible to use aspects of them to disallow our out-of-thin-air executions.

9 FUTURE WORK AND CONCLUSION

Our formal semantics for Wasm extended with shared memory concurrency anticipates future extensions such as shared globals, tables, and references. To achieve maximum generality and avoid preempting future design choices, this semantics supports all consistency modes for all stateful objects. We expect that concrete proposals to incorporate these features into Wasm in the future will make more specific choices, i.e., only support sequentially consistent access to tables.

We leave space within the operational semantics for additional consistency modes to be introduced. We expect that this will be necessary, for example, to efficiently support the compilation of programs that make use of so-called “low-level atomics” [Boehm and Adve 2008]. Moreover, future features such as memory protection may have to be integrated into the model.

The research trajectory of each language’s relaxed memory model follows a predictable pattern. It is often a significant effort to even represent the memory model formally [Boehm and Adve 2008; Manson et al. 2005], let alone integrate it with the language’s existing semantics. Even then, it will often be many more years of collaborative research effort before mature tooling and mechanised proofs over the model can be developed [Batty et al. 2011; Lochbihler 2018].

We believe that our presentation of the WebAssembly memory model lays a firm foundation for this further work. We present a fully mathematised specification of not only the axiomatic model, but the operational semantics, a significant improvement on the foundational presentations of the Java and C++ models [Boehm and Adve 2008; Manson et al. 2005]. We expect that further research into mechanised models and proofs over the WebAssembly memory model will proceed significantly more smoothly than with, for example, C++.
(contexts) \[C ::= \{ \text{func (ft)}^*, \text{global (gt)}^*, \text{table tt}, \text{memory mt}^2, \text{local t}^*, \text{label (t*)}, \text{return (t*)}^2 \} \]
(external types) \[et ::= \text{ft | gt | tt | mt} \]

Orderings
\[\vdash \text{unord : sh} \quad \vdash \text{seqcst : shared} \]

Types
\[\vdash nt : \text{shared} \quad \vdash sh : \text{shared} \quad \vdash t : \text{shared} \]
\[(\vdash t_1 : sh)^* \quad (\vdash t_2 : sh)^* \]
\[\vdash sh t_1^* \rightarrow t_2^* : \text{ok} \quad \vdash sh \text{ mut t : ok} \quad \vdash sh \text{ rt[n] : ok} \quad \vdash sh [n] : \text{ok} \]

Instructions
\[\frac{C \vdash \text{ref.null} : \epsilon \rightarrow rt}{C \vdash \text{func}(i) = sh t_1^* \rightarrow t_2^*} \quad \frac{C \vdash \text{ref.func} i : \epsilon \rightarrow (sh \text{funcref})}{C \vdash \text{func}(i) = sh t_1^* \rightarrow t_2^*} \]
\[\frac{C \vdash \text{call i : t}_1^* \rightarrow t_2^*}{C \vdash \text{call.indirect.ord} ft : t_1^* \rightarrow t_2^*} \quad \frac{C \vdash \text{global.get ord i : t}_1^* \rightarrow t_2^*}{C \vdash \text{table.get} : t_1^* \rightarrow rt} \quad \frac{C \vdash \text{global.set ord i : t} \rightarrow \epsilon}{C \vdash \text{table.set} : t_1^* \rightarrow rt} \quad \frac{C \vdash \text{global.get ord i : t} \rightarrow \epsilon}{C \vdash \text{table.get} : t_1^* \rightarrow rt} \quad \frac{C \vdash \text{table.size} : \epsilon \rightarrow i32}{C \vdash \text{table.grow} : i32 \rightarrow i32} \]
\[C_{\text{memory}} = \text{sh [n]} \quad \vdash \text{ord} : \text{sh} \quad \frac{2^a \leq sz \leq |nt|}{sz = |nt| \lor nt = \text{im}} \quad \frac{sx^2 = \epsilon \Leftrightarrow sz = |nt|}{sz = |nt| \lor nt = \text{im}} \]
\[C_{\text{memory}} = \text{sh [n]} \quad \vdash \text{ord} : \text{sh} \quad \frac{2^a \leq sz \leq |nt|}{|nt| \lor nt = \text{im}} \quad \frac{sx^2 = \epsilon \Leftrightarrow sz = |nt|}{sz = |nt| \lor nt = \text{im}} \]
\[C_{\text{memory}} = \text{shared [n]} \quad \vdash \text{nt.load.ord sz, sz x sz}^2 a \ o : i32 \rightarrow nt \]
\[C_{\text{memory}} = \text{shared [n]} \quad \vdash \text{nt.store.ord sz, a} \ o : i32 \rightarrow \epsilon \]
\[C_{\text{memory}} = \text{shared [n]} \quad \vdash \text{nt.wait} : \text{i64 nt i32} \rightarrow i32 \]
\[C_{\text{memory}} = \text{mt} \quad \vdash \text{memory.size : } \epsilon \rightarrow i32 \]
\[C_{\text{func}}(i) = \text{shared t}^* \rightarrow \epsilon \quad \frac{C \vdash \text{fork i : t}^* \rightarrow \epsilon}{C \vdash \text{fork i : t}^* \rightarrow \epsilon} \]
\[\frac{C \vdash \text{ex\ func ft local t}^* e^* : \text{ex}\ ft}{C \vdash \text{ex\ func ft local t}^* e^* : \text{ex}\ ft} \]
\[\vdash \text{gt : ok} \quad \frac{gt = \text{sh mut t}}{C \vdash \text{ex\ global gt e^* : ex\ gt}} \quad \frac{\text{tt : ok}}{C \vdash \text{ex\ table tt : ex\ tt}} \quad \frac{\text{mt : ok}}{C \vdash \text{ex\ memory mt : ex\ mt}} \]
\[\frac{C \vdash \text{func ft im : ex\ ft}}{C \vdash \text{ex\ func ft im : ex\ ft}} \quad \frac{C \vdash \text{ex\ global gt im : ex\ gt}}{C \vdash \text{ex\ global gt im : ex\ gt}} \quad \frac{C \vdash \text{ex\ table tt im : ex\ tt}}{C \vdash \text{ex\ table tt im : ex\ tt}} \quad \frac{C \vdash \text{ex\ memory mt im : ex\ mt}}{C \vdash \text{ex\ memory mt im : ex\ mt}} \]

Fig. 13. Typing rules (Excerpt)

A VALIDATION
Figure 13 shows an excerpt of the typing rules for concurrent Wasm. We again colour-code the novelties relative to basic Wasm, highlighting in blue changes and additions for reference types and table extensions [Rossberg 2018], and in red additions in support of threading and shared state concurrency. Omitted rules carry over unmodified from basic Wasm [Haas et al. 2017].

Orderings. Wasm distinguishes between shared and thread-local state explicitly via sharing annotations. Furthermore, it allows atomic access only on shared state. Although that restriction is not necessary from a semantics perspective, using atomics on thread-local state serves no purpose, and disallowing it slightly simplifies implementations.

This restriction is encoded with an auxiliary judgement relating ordering modes to sharing modes. It is invoked by the typing rules for instructions involving ordering annotations and allows all combinations except seqcst: local.

Types. Sharing annotations must be enforced and checked for consistency. To ensure the latter, validation forbids forming a shared type (or a definition that would have such a type) that would allow transitive access to non-shared objects. This restriction manifests itself in new well-formedness rules for types. For example, a shared function (which is allowed to be called from multiple threads) must have shared parameter and result types. Similarly, a shared global or table must have a sharable content type. Number types are always sharable, reference types only when they have the appropriate sharing annotation. On the other hand, all shared types can of course freely be used locally.

The reference types proposal [Rossberg 2018] also introduces a simple notion of subtyping between funcref and anyref, which we omit here for simplicity.

Instructions. For pre-existing instructions, the only changes to their typing rules are new side conditions verifying that ordering annotations are compatible with the sharing mode of the object accessed, as described above.

The typing of all new instructions is mostly straightforward as well and follows the pattern of existing rules. The only noteworthy cases are the fork instruction, which requires a shared function, and the instantiate instruction, which consumes and produces sequences of references according to the imports and exports of the module instantiated. This rule invokes the typing rule for modules [Haas et al. 2017], which we don’t repeat here. The notation ref(et) determines the appropriate type of reference for each external type, i.e., the type of import/export objects, as defined at the figure’s top:

\[
\begin{align*}
\text{ref}(sh t^* \rightarrow t^*_2) & := sh \text{ funcref} \\
\text{ref}(sh \text{ mut } t) & := sh \text{ anyref}
\end{align*}
\]

Declarations. There are only two changes to the validation of definitions. First, all types need to be verified for well-formedness regarding sharing specifications, as described above. Second, shared functions must only access shared state. To that end we define the sharing projection \(sh(C)\) of a context \(C\) for a sharing attribute \(sh\) as follows:

\[
sh(C) := \{\text{func } sh(C.\text{func}), \text{ global } sh(C.\text{global}), \text{ table } sh(C.\text{table}), \text{ memory } sh(C.\text{memory})\}
\]

where:

\[
\begin{align*}
\text{local}(et^?) & := et^? \\
\text{shared}(\text{shared } et') & := \text{shared } et' \\
\text{shared}(\text{local } et') & := \epsilon \\
\text{shared}(\epsilon) & := \epsilon
\end{align*}
\]

which is extended pointwise to type sequences, i.e., \(sh(X^*) = (sh(X))^*\). This sets all local context entries to \(\epsilon\) (i.e., unavailable) when the function is shared.
which are rather complex beasts, the rule is by far the most involved. This is a

\[
\begin{align*}
\text{Figure 14 shows the full reduction rule for the } & \text{**\texttt{instantiate}} \text{ instruction. Since it deals with modules,} \\
& \text{which are rather complex beasts, the rule is by far the most involved.}
\end{align*}
\]

\begin{align*}
\text{\texttt{Imports}. Its execution first looks at the import objects, which it is given in the form of reference} \\
& \text{operands, and compares their types to the module's expectation's (bottom of the rule). This is a}
\end{align*}
runtime check\(^6\) that involves a simple notion of subtyping that allows imports to match modulo larger sizes for tables and memories.\(^7\)

Note that import (as well as export) names are not used in the semantics. They are merely a hook to aid external name resolution in host environments and hence irrelevant internally.

Definitions. Instantiation then allocates new instances in the store for all objects defined inside the module. We write \cup for store extension with fresh addresses. It then performs suitable wr actions for initialising these objects. For globals and tables, initialisation is done from values that are denoted by constant expressions, represented as sequences of computationally pure instructions. Because these instructions are pure, they can be executed directly in a single unobservable, seemingly atomic sequence of steps. They can, however, access immutable globals, so that they have to be executed in a frame that points to the module to be created. The validation rule for modules [Haas et al. 2017] ensures that there are no cycles among the global initialisers.

The module instance m is constructed from both imported and internal instance objects. This reflects the indexing of static name spaces in the typing rules. Note that this construction needs to tie the recursive knot between internal function instances f_i^* and the module instance m, which refer to each other. Effectively, function instances are closures over their own module instance, which is necessary for maintaining module-internal static name spaces when a reference to a function instance is transported out of a module, either directly, or via an imported or exported table or global.

Exports. Finally, the addresses of all instance objects are filtered for exports. There may be multiple exports of the same object, making this construction slightly more tedious. Both imported and internal definitions can be exported.

Despite this complexity, the instantiate instruction can be viewed as one atomic step in the operational semantics, because none of the allocations or initialisations are observable before the instruction has finished.\(^8\)

C SEQUENTIAL CONSISTENCY FOR DATA-RACE-FREE EXECUTIONS

We give a proof of a correctness condition of our model: Sequential Consistency for Data-Race-Free Executions (SC-DRF).

Lemma C.1. If $(tr \vdash \mathit{ev}_R \mathit{reads-each-from} \mathit{ev}_W^*)$ and $\neg(\vdash tr \mathit{data-race})$, then $\forall \mathit{ev}_R \in \mathit{reading}_r (tr), \forall \mathit{ev}_W \in ev_W^*, ev_W \prec_{hb} ev_R$.

Proof. Take arbitrary r, $ev_R \in \mathit{reading}_r (tr)$ and $ev_W \in ev_W^*$. We know that $tr \vdash_r^i \mathit{ev}_R \mathit{reads-from} ev_W$ must hold for some i (from $tr \vdash_r^i \mathit{ev}_R \mathit{reads-each-from} ev_W^*$) and $\neg(\vdash tr \mathit{data-race})$. There are two cases.

If $\mathit{sync}_r (ev_R, ev_W)$ holds, we know that $ev' \prec_{hb} ev$ holds by the definition of $tr \vdash_r^i \mathit{ev}_R \mathit{reads-from} ev_W^*$.

\(^6\)A more expressive type system could turn the import verification for the instantiate instruction into a static check. However, the intention here is to model host system behaviour, where the module is usually not known statically and these checks hence have to be dynamic.

\(^7\)The official Wasm specification also includes optional upper limits on the sizes of tables and memories, such that this check becomes one for interval inclusion. Under that semantics, these objects cannot be grown past their specified maximum size, which enables additional optimisations in engines.

\(^8\)The Wasm language specification also incorporates a notion of start function that is executed right after instantiation and whose execution is not atomic. To extend the formal semantics to that, the instantiate instruction would reduce to a call to this function before returning the exports. Active data and element segments can be handled in a similar fashion.
In the other case, we have \(\neg sync_r(ev_R, ev_W) \). Therefore, we must have \(\neg (r, ev \text{ race-with } ev') \).

Since we have \(overlap_r(ev_R, ev_W) \), we must therefore have \(ev_R \prec_R ev_W \lor ev_W \prec_R ev_R \). We have \(\neg (ev_R \prec_R ev_W) \) by the definition of \(tr \vdash tr \) \(ev_R \) reads-from \(ev_W \). Therefore \(ev_W \prec_R ev_R \) holds.

Lemma C.2. For all \(ev, ev', k \in range_r(ev) \), if \(ev \prec_{tot} ev' \), and \(\neg (r, ev \text{ data-race-with } ev') \), then either \(k \notin range_r(ev') \), or \(ev \prec_R ev' \), or \(sync_r(ev, ev') \), or \(\neg (\text{reading}_r(ev) \lor \text{reading}_r(ev')) \).

Proof. This follows fairly directly from the definition of \(r, ev \text{ data-race-with } ev' \) and the fact that \(\neg hh \) implies \(\sim_{tot} \).

Lemma C.3. For all \(ev, ev', k \in range_r(ev) \), if \(ev \prec_{tot} ev' \), and \(\neg (r, ev \text{ data-race-with } ev') \), then either \(k \notin range_r(ev) \) or \(ev \prec hh ev' \), or \(sync_r(ev, ev') \), or \(\neg (\text{writing}_r(ev) \lor \text{writing}_r(ev')) \).

Proof. This follows analogously.

Theorem C.4. If \(\vdash tr \) valid-with \(\neg (r, tr \text{ data-race}) \) then \(\vdash tr \) is seqcst.

Proof. Take arbitrary \(r \) \(ev_R \in \text{reading}_r(tr) \). There must exist some \(ev'_W \) such that the relation \(tr \vdash tr \) \(ev_R \) reads-each-from \(ev'_W \) is satisfied. We will prove \(tr \vdash tr \) \(ev_R \) seqcst-reads-each-from \(ev'_W \).

First note that \(|ev'_W| = |\text{read}_i(ev_R)| \) holds from \(tr \vdash tr \) \(ev_R \) reads-each-from \(ev'_W \). We must therefore prove \((tr \vdash tr \) \(ev_R \) seqcst-reads-from \(ev'_W \) \). It suffices to prove that, for an arbitrary \(i < |ev'_W| \), and taking \(ev_W \) as the \(i \)th event of \(ev'_W \), \(tr \vdash tr \) \(ev_R \) seqcst-reads-from \(ev_W \) holds.

First, note that we have \(ev_W \in ev'_W \), and therefore by Lemma C.1, we have \(ev_W \prec hh ev_R \), and therefore \(ev'_W \prec_{tot} ev_R \). We also have \(tr \vdash tr \) \(ev_R \) reads-from \(ev_W \), which is implied by \(tr \vdash tr \) \(ev_R \) reads-each-from \(ev'_W \). All that remains is for us to prove that \(\forall ev'_W \in \text{writing}_r(tr), ev'_W \prec_{tot} ev_W \Rightarrow k \notin range_r(ev'_W) \). It suffices for us to prove this for an arbitrary fixed \(ev'_W \in \text{writing}_r(tr) \).

Again, there are two cases. If \(sync_r(ev_R, ev_W) \) holds, then from \(tr \vdash tr \) \(ev_R \) reads-from \(ev_W \), we have \(\neg \text{same}_r(ev_R, ev'_W) \). Since \(\text{same}_r(ev_R, ev_W) \) holds (implied by \(sync_r(ev_R, ev_W) \)), we have \(\neg \text{same}_r(ev_W, ev'_W) \), and therefore \(\neg sync_r(ev_W, ev'_W) \) and \(\neg \text{sync}_r(ev_W, ev'_W) \). Therefore, by using Lemmas C.2 and C.3, we have \(ev_W \prec hh ev'_W \prec hh ev_R \), and therefore \(k \notin range_r(ev'_W) \).

In the other case, we have \(\neg sync_r(ev_R, ev_W) \). Therefore we have \(\neg \text{sync}_r(ev_R, ev'_W) \lor \neg \text{sync}_r(ev'_W, ev_W) \). We must exhaustively consider the three sub-cases of this disjunction.

First, if we have \(\neg \text{sync}_r(ev_R, ev'_W) \) and \(\neg \text{sync}_r(ev'_W, ev_W) \), we have \(ev_W \prec hh ev'_W \prec hh ev_R \) (otherwise there would be a data race). Therefore \(k \notin range_r(ev'_W) \).

Second, if we have \(\neg \text{sync}_r(ev_R, ev'_W) \) and \(\neg \text{sync}_r(ev'_W, ev_W) \), we have \(ev'_W \prec hh ev_R \) (using Lemma C.3). In the weaker model, we are now stuck. However in the stronger model the condition \((\dagger) \) allows us to derive \(\bot \). Therefore \(k \notin range_r(ev'_W) \).

Third, if we have \(\text{sync}_r(ev_R, ev'_W) \) and \(\neg \text{sync}_r(ev'_W, ev_W) \), we have \(ev_W \prec hh ev'_W \) (using Lemma C.2). In the weaker model, we are now stuck. However in the stronger model the condition \((\dagger) \) allows us to derive \(\bot \). Therefore \(k \notin range_r(ev'_W) \).

D RELATIONAL MODEL

Figure 15 gives a relational version of the model, in the style of herd (assuming appropriate syntactic extensions for mixed-size).
Wasm
i, j, k in type int
b in type byte
r in type region ::= dat | len | elem | val
relation po
relation same<r>
relation sync<r>
relation rf<r>[[i]]
relation tot
set writing<r>
set reading<r>
set write<r>[[i]](b)
set offset<r>(n)
let sync<r> = [seqcst & reading] ; same<r> ; [seqcst & writing]
forall r, i. rf<r>[[i]] = [writing<r>] ; rf<r>[[i]] as reads-from-2
forall r, i. rf<r>[[i]] = rf<r>[[i]] ; [reading<r>] as tr-valid-1
total tot
cardinal (union i. [tearfree<r>] ; (rf<r>[[i]] & same<r>)^−1 ; [tearfree<r>]) <= 1 as no-tear
forall r, i. exists b, j, k.
rf<r>[[i]] = ([write<r>[[j]](b) ; rf<r>[[i]] ; [read<r>[[i]](b)]) &
([offset<r>[(k - j)]; rf<r>[[i]] ; [offset<r>[(k - i)]) as value-consistent
let hb1 =
po | union i. (rf<dat>[[i]] & sync<dat>^−1) | union i. (rf<len>[[i]] & sync<len>^−1)
let hb = hb1 | hb ; hb
irreflexive rf<r> ; hb^−1 as hb-consistent-1
forall r. i. irreflexive (hb ; [writing<r> & offset_range(i)]; hb ; rf<r>[[i]]^−1) as hb-consistent-3
forall r. i. irreflexive (tot ; [writing<r>]; (tot & sync<r>); (rf<r>[[i]] & hb & sync<r>)^−1) as sc-last-visible-1
forall r. i. irreflexive (hb ; [writing<r>]; (tot & sync<r>); (rf<r>[[i]] & hb)^−1) as sc-last-visible-2
forall r. i. irreflexive ((tot & sync<r>); [writing<r>]; hb ; (rf<r>[[i]] & hb)^−1) as sc-last-visible-3
acyclic hb
acyclic (hb | tot)

Fig. 15. A relational reformulation of the memory model

\[
\begin{align*}
e_{W} & \xrightarrow{\text{tot}} e_{W}' \xrightarrow{\text{tot, SYNC}_r} e_{R} \\
r_{f}^{-1}, & \xrightarrow{\text{hb}^{-1}, \text{SYNC}_r}
\end{align*}
\]

Fig. 16. First condition of sc-last-visible forbids these cycles

\[
\begin{align*}
e_{W} & \xrightarrow{\text{hb}} e_{W}' \xrightarrow{\text{tot, SYNC}_r} e_{R} \\
r_{f}^{-1}, & \xrightarrow{\text{hb}^{-1}}
\end{align*}
\]

Fig. 17. Condition † of sc-last-visible forbids these cycles
Fig. 18. Condition \(\dagger \) of sc-last-visible forbids these cycles